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1. INTRODucnON

Let Ca denote the class of continuous and 2a-periodic (or bounded if
a = CfJ) functions defined on the real line, and let .P(f; x) denote the
transform OfJE C" by the linear operator 2: C" -->- Ca'

In this paper we investigate the degree of approximation to functions f E Ca
by sequences ofcertain types ofnonpositive linear operators in the Tchebycheff
norm. The motivation for this investigation is the fact that certain types of
sequences of positive linear operators, {2n }, can only achieve a degree of
approximation as good as fl-2 for any interesting class of functions. This has
been established by Korovkin [5) for sequences of positive linear
trigonometric polynomial operators of degree n, and by Butzer [1] for
positive linear operators of the type

Yl',,(f; x) = n J'"' J(x + u) H(nu) du,
-,",

(1.1)

where H(t) is a positive, even function continuous at 0, with r:", H(t) dt = L
In order to improve this degree of approximation, we introduced in [4],
a special type of Inonpositive operator, namely, a 2k-zero operator of the
form

.PU;;)(f; x) = r J(t) KUc)(t - x) dt,
-a

o < a ~ 00,

where Kl!;)(U) E Ca is an even function that oscillates across the u-axis a fixed
number of times in a prescribed manner (see Definitions 1 and 2). Necessary
and sufficient conditions were given in [4] for sequences, {.P~:')(f; x)}, of
such 2k-zero approximating functions to converge uniformly to f(x) E C" ,
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In the present paper, it is shown that for sequences of 2k-zero trigonometric
polynomial operators, {g-;;)}, and 2k-zero operators, {£';;)}, of the type (Ll)
(see Definition 3), better degrees of approximation are possible for certain
classes of functions. In particular, 2-zero operators may yield better degrees
of approximation than is possible with positive linear operators of these types.
On the other hand, it is shown that no matter how "smooth" f E Ca is, the
degree of approximation to f is not better than n-2k- 2 for these types of
2k-zero operators. These results are contained in Theorems 2, 3a and 3b.
Further, a method for constructing 2k-zero operators is discussed (Theorem 1)
and some examples are given.

DEFINITIONS

Let fL(t) be an analytic, even function defined on [-a, a) such that fL(O) = °
and p.,(t) is strictly increasing on [0, a). Denote thejth fL-moment offE Ca by
MlfL,f), i.e.,

MifL,f) = fa fLi(t)j(t) dt,
'-a

j = 0, 1, ... ,

and set Mo(f) = Mo(fL,f) whenever convenient.
We call (X a simple zero of a function fE Ca if f«(X) = 0, and

for some E > 0, (X - E < ~1 < (X < ~2 < (X + E implies f(~1)fG2) 7'= 0,
Sgn[f(~l)] = -sgn[f(~2))'

DEFINITION 1. A function K(t) E Ca is called a kernel if

(i) K(t) = K(-t),
(ii) Mo(K) = l.

If, in addition, K(t) has exactly k simple zeros (Xi, i = 1, 2,..., k, in (0, a)
and for some fL(t) we have

(iii) M;(fL, K) = 0, j = 1,... , k,

then K(t) is called a 2k-zero kernel with respect to fL, and is denoted by K(k)(t).

DEFINITION 2. Let 2'(k): Ca -+ Ca be the linear operator defined by the
convolution

2'(")(f; x) = r jet) KUd(t - x) dt,
-a

0< a":;;; 00,

where K(k) is a 2k-zero kernel. Then 2'(k) is called a 2k-zero operator.
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DEFINITION 3. (a) Let a = 1T and I-,(t) = sin"(t/2). For a fixed k aEa
each 11, let !f~') be a 2k-zero operator such that !l'~')(j; x) is a trigonometric
polynomial of degree n. Denote these operators by 3';:') and set c,\;f/(f) ~~

M j [sin2(t/2),j), j ?' 0. (Note that 3'~~:Cf; x) is a trigonometric polynomial
of degree n, for every fE Cu , if and only if K;,k)(t) is a trigonometric
polynomial of degree n.)

(b) Let a = 00 and fLU) = t 2• For a given k and a gi'ven 2k-zero kernel
HU<) with respect to fL, detlne K~')(t) = nHik)(nt), n = 1, 2, .... Denote the
operator defined by the 2k-zero kernel K~') by ~'!IE;:') and set MjHCf) =
Mlt 2,j), j ?' O. It is assumed in this case that M~ll HUe) I) exists.

2. CONSTRUCTION OF 2k-ZERO KERNELS

Method

The construction consists of multiplying a positive. even function K(1) E C"
by an appropriate even function Pi..(t) E C" which has exactly 2k zeros in
(-a, a).

We show that if ,.\(t) is a function defined on [-a, a], satisfying certain
conditions, then there exists an algebraic polynomial p(x) of degree k such
that we can take pACt) = p(,.\(t)), tE [-a, a]. Furthermore, we have then
M o('\, p,\k) = 1 and Miil, p,\K) = 0, j = 1,... , k. We first note the following
fact:

Fact 1. Let f(t) (::;::: 0) be a nonnegative, even, continuous function on
[-a, a]. Let "\(t) be defined on [-a, a] and suppose {N(t)X~o is linearly
independent on [-a, a). Then, if the ii-moments il((iI,f), j ,= 0, ... , 2k, exist,
the system of equations

k

L fJiMi+ieA,f) = OJ,
i=O

j = 0, 1,,.., k, (2.2)

where 80 = 1 and 8j = 0, j ?' 1, has a unique solution.
The proof of this fact is accomplished by showing that the coefficient matrix

of (2.2) represents a positive definite quadratic form (Hoff [3]).

THEOREM 1. Let KU) EO Ca be a nonnegative (~ 0) even ftmction and let
fL(t) be as in Section 1. If the fL-moments MlfL, K), j = 0, 1, ... , 2k, exist, then
there is a polynomial p(x) = L~=o YiXi such that if we set pjt) = PC,u(t» for
1 t I :::;; a and extend pit) periodically to the whole real line if a < 00, then
pit) K(t) is a 2k-zero kernel.
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Proof Since p.(t) is strictly increasing on [0, a), {p.i(tm~o is linearly
independent on [-a, a]. By Fact 1 with A = p. and f = K, there exists a
solution {f3J:"~o to the system (2.2). Let q(x) = L:~o f3ixi and set q,lt) =
q(fL(t)), t E [-a, a]. If a < 00, extend q,,(t) to the whole real line as a
2a-periodic function. Then q,,(t) E Ca is even and qJt) K(t) satisfies conditions
(i), (ii), and (iii) of the definition of a 2k-zero kernel with respect to p.
(Definition 1). Furthermore, since q,,(t) K(t) satisfies condition (iii) of Defini­
tion 1, qit) must have at least 2k simple zeros in (-a, a) (Hoff [3]). On the
other hand, q(x) has at most k simple zeros in (-a, a). Therefore, since p.(t)
is even and strictly monotone on [0, a], q,,(t) = q(p.(t)) has at most 2k
simple zeros in (-a, a). Thus, with p(x) = q(x), the theorem is established.

Examples

We first construct 2-zero and 4-zero kernels of the form I1H(nt) on
(- 00, 00). Consider the positive Weierstrass kernels

andnotethatMjH(W~O)) = (l ·3··· (2,f - 1))j(2n2)j,j ::;;0 1,andMoH(W~0)) = 1.
Solve (2.2), with f = W;,°J, A(t) = t2 and k = 1. This yields the solution
130 = i and 131 = -112• Therefore, we have the sequence of 2-zero kernels

with zeros ±cxn1 = ±(ljn) \/l Similarly, with k = 2, we construct the
4-zero kernels

( ) 11 (15 5 1) .Wn
2(t) = ~ - - - (nt)2 + - (11t)4 e-(nt)-

~/~ 8 2 2

with zeros

and

As another example, consider the positive nth degree trigonometric
polynomial

(0) ( t )2n
V" (t) = cosT '
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and note that, with p = J:" (cos(t/2»)2a dt, we have

r () 1 . 3 ... (2; - 1)
;j,f'(V 0) = ' J , = G(Il-i).
'] n P 2J(11 + j)(n + j - 1) ... (n --'-- 1)

Solve (2.2), with! = (lIp) V~O), A(t) = (sin([/2»)2 and k == 1. This yields riie
sequence of 2-zero trigonometric polynomial ke:-nels of degree n ,- I:

1,(l) (t' n + 1 ~' 't ' 2\ ! t ')271
',,+1 ) = (2 -L 1) 3 - (2i! + 4) (sir:. T)' Hcos --;;- .p n , , _,.. L,

Similarly, with k = 2, we have the 4-zero kernels of c.cgree n + 2:

V(2i() __ (11+1)(11+2) (--20" -+-3'('; _~J2
n+2 t -- ') (4 2 8 3) J VI ).Ill " J

~P 11 + 11 T - .I.

(
to, J,_ ' t ,2"

+ 4(11 -+- 3)(n -+ 4) sin -"l)' ,'leas";"l .
£,., I, .L '

The zeros of these 2-zero and 4-zero trigonometric '>:ernels are a21 of the
order 0(11-1/2).

-2 2

FIG. 1. Kernels W~21, 11 = !, 2, 3, 4.

I

+2

-IT Y,

FIG_ 2. Kernels V~~2' n = 2~ 6~ 10~ li~.
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We note further that {MoH(1 W~j)!n and {J\1oT(1 V,~j) I}, j = 1,2, are
bounded sequences. Therefore, from the results in Part I on convergence,
since the sequences of kernels {W~j)} and {V~j)}, j = 1, 2, peak, each one
defines a sequence of 2-zero or 4-zero operators which, when applied to an
f E Ca , converge uniformly to it.

(2.3)k = 1,2,....

A Special Example

We now construct a special sequence of 2k-zero trigonometric polynomial
kernels. These kernels are used later in proving Theorem 3b concerning the
degree of approximation of trigonometric operators. The kernels are
constructed from generalized Jackson kernels, i.e., positive trigonometric
polynomials of degree 2(n - l)(k + 1) of the form

(

. nt )4k+4sm-
Jnit) = n-4k- 3 ~ ,

sm 2
We first state, without proof, the following two facts (Hoff [3]):

Fact 2. For k ~ 0, let

and

Then

(
.. nt )4k+4

"T smT
Sjn = n-

4k
-

3 J_
n

(, t )41e+4-21 dt,
SInT

J
'«J (sin t )4k+4

Uj = 4 0 t4kH-2j dt < 00,

j = 0, 1, ... , 2k + 1.

(2.4)

(2.5)

(2.6)

Sjn, = Sin + 0(n-21).

Fact 3. Let Sjn be defined by (2.6). LetS be the (k + 1) x (k + 1) matrix

l
,:on ~ln .. , S.,n 1

S = Sln S2n'" :
. .

A •

Sh:n ... s2k.n

and let Si be the submatrix of S obtained by crossing out the first row and
ith column of S. Then there are constants bo 01= 0, bI , ... , ble+! such that with
k' = 2k(k + 1), we have detS = bon-Ie' and detSi = bin-le '+2(i-l', i =
1,... , k + 1. Furthermore, if p(m) is a permutation of the integers
m = 0, 1,... , k, and if we set In p =c= In + p(m), then

kn smpn = O(n-k ').

m=o
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LEMMA 1. Let Jnk be defined by (2.3), k ~ 1. Then there exist 21e-zao
kernels of the form

where c;~) = 0(1121) as n --'>- 00, i = 0, 1, ... , k and N = 2(n - l)(k -+- 1).

Proof Let Sin be defined by (2.4) and consider the system of equations

k

I Sj+i,nX'i :=: Si'
j~O

i == 0, 1, ... , k,

where 00 = 1, 0, = 0, i ~ 1. Since Ai/(Jn,.,) = Sji1 , therefore, by Fact L
with Nt) = sin2(tf2) and f = In/i;' a solution {Xi} = {c;~h, i = 0,... , k,
exists for (2.8). Hence, by Theorem 1, with q(x) = L:=o C;~)Xi and J1-(t) =
sin2(tf2), the functions (2.7) are 2k-zero trigonometric polynomial kernels,

We now show c:~) = o(n21), i = 0, ..., k. Note, first, that by Fact 2,
Sjn = Sjn + 0(n-2j

), where ~n is defined by (2.6). This may be rewritten in the
form Sjn = SjnO + Ejn), where Ejn -+ °as n -+ ceo

Let S be the coefficient matrix of the system of equations (2.8):

and let Si denote the submatrix of S obtained by crossing out the first row and
ith column ofS. We show that, with k' = 2k(k + 1), det S = bon-/';' -T- o(n-/;')
and det Si = 0(n-k '+2(1+1», i = 1, ... , k + 1, where bo is some nonzero
constant. Let p(m) denote a permutation of the integers m = 0, 1, ... , k, and
let me = m + p(m). Then

det S = ~ (sgn p nDo Smpn)

= ~ (sgn p ,Do smpnCl + Empn»)

= det S + D n , (2.9)
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where S is the matrix defined in Fact 3, and D n is a sum of terms of the form

I ~ k,

~here each Y)mn is one of the Empn . By ,Fact 2, rr:'~o s"'pn = O(n-k
'). He~ce,

smce Y)mn -+ °as /l -+ 00, D n = o(n-k ). Also, by Fact 2, we have det S =
bon-k', bo ei= 0. Therefore, from (2.9) we obtain det S = bon-h' + o(n-k'),
bo 7'= 0. In a similar manner, it can be shown that det Si = 0(n-I.:'+2(i-1»),
i = 1,... , k + 1.

Now if we solve the system of equations (2.8) by Cramer's rule for the
unknowns cl~) = Xi , we obtain

I (k) I = Idet Si+1 I= 0(I1-
k
'+2i) = O( 2i)

Czn det S I bon-k' + o(n-k') 1 n,

; = 0, 1,... , k. This establishes the lemma.
The 2k-zero operators defined by the trigonometric kernels KJ:) constructed

in Lemma 1 yield approximating functions 5'J!fl(f; x) which are themselves
trigonometric polynomials in x of degree N = 2(n - l)(k + 1) +- k. The
representation of these approximations as trigonometric polynomials may be
obtained as follows.

Since Jnk is an even trigonometric polynomial of degree 11' =
2(n - 1)(k + 1), it admits the representation

n'

J (t) = n-4k- 3 " p~k) cos l'tnk ~ ·zn ,
i~O

where pl~) = 0(n4k+3), i = 0, 1,... , n'. Therefore,

k ?: 0,

N

= n-4k- 3 I ai~) cos it
i=O

(2.10)

where the {al;)}~o may be calculated from the coefficients {d;~)}~=o and the
values {pi~)}7~0 . Since Jnk(t) = n-k[Jno(t)]k+1, therefore, for fixed n, the pi;~}

may be calculated recursively with respect to k, having (Schurer [8])

(0) _ 1 \ 3;2 - 6;211 - 3i + 4n3 + 2n, 1 ~ i ~ n,
Pin - "3 !i3 + 6;2n - i(12n2 - 1) +- 8n3 - 2n, n ~ ; ~ 2(M - 1)

p~~ = t(2n3 +- n).
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We then obtain

f<;;)((; x) = n-Jk- 3r jet) \ f u;~) cos i(t -- x)1 dt
-TC I i~O \

,x,'here

135

i = 0, 1, ... , N,

For example, if k = 1, we have from (2.10) the 2-zero kernels

( N-l

K(l)(t) = 11-7 !(e(ll + .;Lef l ») ') ,.,(1) cos it
N ,on 2 In .J-i fJ21!

t £=0

N-l \

- .le fl ) "\' p!ll(cos(i + 1) t --'- cosU - 1)' t,1
J n .L,. '" I '. II,-0 ,

Therefore,

N

=== /1-7 '\' Ufl) COS itL in ,
i~O

N = 411 - J.

I == l~

i:=; 2, .. " jV - 1~

and

3. ASYMPTOTIC BEHAVIOR OF THE 2k-ZERO OPERATORS .r~) AND off;;''l

Critical Degree of Convergence

In this section we show that for the operators Yl';,k i and ,r~,i,;) defined ill
Definition 3, Section 1, better degrees of approximation are possible for
certain classes of functions. On the other hand, we show that there is a limit,
in a certain sense, to this improved degree of approximation.

To state these ideas more precisely, we let II 'I! denote the Tchebycheffnorm
and make the following definitions.
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DEFINITION 4. Let {.!l'n} be a sequence of operators defined on Ca , and
let o/(n) be a positive function defined on the positive integers. Then {.!l'n} is
said to have critical degree of convergence o/(n) if:

(i) o/(n) = 0(1);

(ii) there exists an f E Coo such that

lim II .!l'n(f; x) - j(x):! > 0; and
~ o/(n)

(iii) for every fE COO, II ~.(f; x) - j(x)11 = O(o/(n».

DEFINITION 5. Let o/(n) be a critical degree of convergence for a sequence
of operators {.!l'rJ If there exists a set of functions S* ~ Ca such that
II.!l'nCf; x) - j(x)11 = O(o/(n» if and only iffE S*, then S* is called a domain
of critical degree for {.!l'n}.

The moduli of continuity of order one and two of anfE Ca are defined,
respectively, as

Wl(f; h) = max [I j(x + t) - j(x)[, I t I ~ h],
x,1

wif; h) = max [I j(x + t) + j(x - t) - 2j(x)\, I t I ~ h],
X,I

and we note that for any r ;? 0, w 1(f, rh) ~ (1 + r) w 1(f, h). We then define,
for every integer m ;? 0, the following classes of functions:

em = {fE Ca:fhas a continuous mth derivative},

ym = {IE Ca : wl(f<;n>, h) ~ Bh for some B > O},

zm = {fE Ca:j<'Yil) continuous and w2(f(;n), h) ~ Bh for some B > O},

and note that cm+l C ym C zm C em.
To illustrate the concepts of critical degree of convergence and domain of

critical degree, consider positive linear operators. Let {Yn} be any sequence of
positive trigonometric polynomial operators of degree n (which do not
necessarily have to be of the convolution form given in Definition 2).
Korovkin [5] has shown that there exists anfE Coo (e.g., one of the functions 1,
cos x, sin x) such that II Yn(f; x) - I(x)ll = 0(n-2) is false. It is known,
however, that for the positive trigonometric polynomial Jackson operator of
degree 2(n - 1), defined by

(
. nt)4Slll--

y"(f; x) = 27Tn(21~2 + 1) LT

j(x + t) ~ dt,
7T stn-

2

(3.1)
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we have Ii ff.,.(f; x) -f(x)JI = 0(n-2) for every fE C2. Hence pen) == 11-2 is a
critical degree of convergence for the Jackson operators {~"}. Moreover,
Lorentz [6] has shown that a domain of critical degree for these operators
is yl. Also, for the positive operators of the type yf';f') defined in Definition 30,
Butzer [1] has shown that {£(Ol} has a critical degree of converger'.c::;
<fen) = n-2•

The Operators £~k)

THEOREM 2. Let {£~k)} be a sequence of the 2k-zero operators defined m
Definition 3b. Then {£~k)} has a critical degree of convergence <fen) = n-2k-~,

Moreover, ifS* is a domain of critical degree for {£';,kl}, then y2;+! ~ S*'.

Proof Consider first the local asymptotic behavior of ff;;l(f; x) - f(x)
for IE C 2k+2. Following the method of proof of Butzer [1] we expand/(t) in
its Taylor's series with a remainder:

'" f<il(x) 1
f(t + x) - f(x) = L --.,-'- t i + -I-, [j<,n)(~t) - pm)(x)] t'" (3.2)

i~l I. .11 ~

where m = 2k + 2, ~t lies between x and x + t, and we assumcf'I11)(x) oF O.
Let eCt) = rm)(~t) - f(lnJ(x). Then

£~::l(f; x) - f(x) = 11 f" [J(t +- x) - f(x)] H(kl(nt) dt
-xo

12 I'CO+ - (J(t) t"'H(I')(nt) dt. ','3.3)'
In! .'-x ' ,

Since H(u) is an even function, the summands corresponding to i =

1, 3, ... , 2k - 1 vanish. From the definition of a 2k-zero kernel (condition iii
of Definition 1) it follows, however, that the summands corresponding to
i = 2,4, ... , 2k also vanish. Hence, we may rewrite (3.3):

£,~d(.f; x) - f(x) =~ jpm)(x) J'w ntn>H(lc)(I1t)dt -;- J(C0 n8(t) t'"HUc)(nt) dt!
In ~ t --00 -·n i

(3.4)

Let II and 12 denote the first and second integrals in (3.4) respectively. Then

II = n-m f'" UmHlk)(U) du = ll-m jl,.1f!e-l(J{(ki).
-00

(35)
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Now sincef"nl(t) is continuous and bounded, for every E > 0 there exists a O.
such that I B(t)[ < E when 0 ~ I t I < o. ; and there is a B > 0 such that
I B(t)1 ~ B for all t. Given E > 0, write

12 = (J + r )nB(t) trnHU'l(nt) dt.
Itl<a. • Itl>a.

Let 121 and [22 denote the first and second of these integrals, respectively. Then

I121 [ ~ En r tin I HUC1(nt) [ dt = En-rn r Urn I HCkl(U)1 du
- [tl<a. - ["I<a.

= E/1-mMf"+l(1 H(O I)

and

[[22 I ~ Bn I tm I HCk)(nt)1 dt = Bn-mJ um I HC),:)(u) [ duo
[11)8. I,,[;;>na<

From Definition 3(b) we have that MlcH(1 HC).:) I) exists. Therefore, there is an
N. > 0 such that for n > N. we have

r um ! H(k)(u)1 du < E.
-1"I;;>na<

Hence, [[22 I ~ EBn-m and

where B' == B + M~r1(1 H().:) I). From this result, (3.4) and (3.5), we have,
for each fixed x such thatpml(x) of= 0, that

Thus, ifpm)(t) ~ 0, then (3.6) implies that

II Yr~)(f; x) - f(x)ll =F o(lrrn), m = 2k + 2. (3.7)

Note that if we did have Ii Yr~).:)(f; x) - f(x)11 = o(n-"'), thenpm)(t) = 0, in
which casef(t) must be a polynomial of degree m - 1 = 2k + 1.

Now consider the global asymptotic behavior of the difference
.7C.~~l(f; x) - f(x); we letfE pk+1. By an argument similar to the one used in
deriving (3.4) we have



KERNELS OF FINITE OSCILLAnONS

Now

: BCt)1 = !fim-l)(~f) - f("'-I(X)( ~ 0)1(j<,,,-1), ! ff - x I)

~ (1 + 11 I ~t - x I) WI \'jim-1J, ~)
\ r1,

(
1

~ (l + n [ t I) WI pm-I), -).
, 11-

Therefore, using (3.8), we obtain

LJ9

i ~11.:)(f; x) - I (x) I

But sincefe Y2k+\ Wl(f12k+1 ), lin) = 0(n-1). Hence,

Relation (3.9) together with (3.7) imply that fen) = n-2k--2 is a critical degree
of convergence for {£'~')}. Moreover, (3.9) implies that y21.-:-1 .c S*, where S*
is a domain of critical degree for {£'~)}. This concludes the proof of the
theorem.

The Trigonometric Operators ff~k)

Recall that the assertion of Theorem 2 concerning critical degree of
convergence holds for any sequence of 2k-zero operators of the type ff~::).

This is not too surprising since the £';,k) are a very special type of 2k-zero
operators whose kernels are generated from a single kernel function. For
sequences of 2k-zero trigonometric polynomial operators, however, it is 110t

necessarily true that a degree of convergence as good as n-2/;-2 can be achieved
for sufficiently smooth functions, even if the degree of convergence improves
as k increases (as for example, is the case for the sequences of operators
defined by the 2-zero and 4-zero kernels V~:) and V,(,~) constructed in
Section 2). On the other hand, it is true that every sequence {§"~k)} satisfles
condition (ii) of Definition 4 with fen) = 11-21 - 2, i.e., there exists an fe C,
such that limn...cc n2k-r2 11 §"~)(j; x) - f(x)11 > O. Furthermore, a particuiar
sequence of 2k-zero trigonometric polynomial operators can be constructed
that does indeed have a critical degree of convergence n-2;';-2. These assertions
are contained in the following lemma and theorems.
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LEMMA 2. Let {.r~>} be a sequence oj 2k-zero trigonometric polynomial
operators k ?: 1, as defined in Definition 3a. Then jor g(t) = (sin(t/2))2k+2,
we have 11.r~>(g; x) - g(x)ll ?: cn-2k- 2, c > O.

A proof of this lemma is given in Hoff [3]. The proof proceeds by induction
on k and depends upon showing that all the zeros of the kernels satisfy
I Oini I ?: c1n-\ C1 > 0, i = 1,... , k, and then employing the well known
result that if Tn+1(x) is the (n + l)st degree trigonometric polynomial of best
approximation to I sin x I on [-7r, 7r], then II T n+1(x) - I sin x III?: c2n-\
C2 > 0 (Korovkin [5]).

From this lemma we immediately obtain

THEOREM 3a. Let {.r;;>} be a sequence oj2k-zero trigonometric polynomial
operators, k ?: 1, as defined in Definition 3a. Then there is anje e CLJ such that

lim n2k+211.r~k>(f; x) - j(x)11 > O.
n~co

Remark. The paper by Butzer, Nessel and Scherer [2] establishes this
theorem using a more general approach. It is shown that if {Kn(u)} is a
general sequence of even, trigonometric polynomials of degree n such that
Kn(O) > 0 for n sufficiently large, and if Kn(u) has exactly 2k changes of sign
for each n > 2k, then at least one of the k + 2 sequences

{n2k+2 11 2n(cos iu; x) - cos ix II},

does not tend to zero as n -+ 00, where

o ~ i ~ k + 1,

1 ."
2ij; x) = 27r L/(t) K.,(x - t) dt

and II '11 can be taken as the Tchebycheff or as any L p norm, 1 ~ p < 00.

Similar types of results are also given for nonsymmetric Kiu) and for K n

such Kn(O) < 0 for sufficiently large n.
We now prove an analogous theorem to Theorem 2 for a particular

sequence of 2k-zero trigonometric polynomial operators. The following facts
are needed (Hoff [3]):

Fact 4. Let k, m, and i be positive integers such that k ?: 2 and
m + i < 2k. Then

n-2"+1 flT I t 1m Isin !.Ii
(Sin '~ )21.; dt = O(n-m-i).

-7f 2. t
sm 2
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Fact 5. Let h;(t) = (sin(t/2)}i, i = I, ... , 2k --L 1. Then

. . t· i 2:1:+1 . . / _
t' = (2 SIll -) - ") a··t) - "'cp·/t\ t 2h',22 t.....J Z) k. c, J

j~i+1

where

141

.. - ~ '(;)(01G" - 'j 1, JJ.
and / ) 1 . (21:+2)(f:. )

epA! = 2k 2\' fl i ,~it·( + J!
(3.10)

and git is between 0 and t.
We also make use of a well known result due to Zygmund [10]:

Fact 6. Let Tn(x) be the nth degree trigonometric polynomial of best
Tchebycheff approximation to the periodic function I(x). Then for any
integer In ;?: 1. II Tn(x) - j(x)11 = 0(n-m-1) if and only iffE Zm.

THEOREM 3b. There exists a sequence {3'\k)} of 2k-zero trigonometric
polynomial operators which has a critical degree ofconvergence !j;(n) = n-21.-S,

k ;?: 1, and a domain of critical degree, S*, satisfving y2'+1 ~ S* C Z2~·-'-1.

Proo! Let {.:r~S)} be the sequence of 2k-zero trigonometric polynomial
operators defined by the kernels K}!!) constructed in Lemma 1:

K<k)(t) = [ f cUe) (sin ~)2il J (t)
N 1-J l.n 'J I nk .,

i=O - J

where N == 2(11 - I)(k + I) + k and Jnk(t) is defined by (2.3). We show
that i1.:TYv')(f; x) - j(x)]] = 0(n-2k- 2) for everyf E Coo. We in fact show that
this holds for every fE Y21:+l.

LetfEO Y 2k+l; expandf(t) in its Taylor series with remainder at x EO [-77, 7T]:

In jU)(x). 1
j(t + x) - j(x) = I -~- t' + --;:-T B(t) t'"

i~l I. .,1.
(3.Il )

where m = 2k + I, B(t) = f<m)(gt) - jlmi(x), and tt lies between x and
t + x. From the representation of ti, i = I, ... , 2k, given in Fact 5, (3.11) may
be rewritten as

_, m. til r " • ~ ".,

j(l + x) - j(x) = ~ hi (Sill T) + tnT BIJ) t'" + (L bi'Pi(t») tm,L
2=1 \ '&=1 I

where ep;(t) is defined in (3.10) and each coefficient bi is a sum of terms
involving the derivatives off at x and the coefficients aiJ defined in (3.10),
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Therefore, since Ml(KJ:») = 1, we have

5?;)(I; x) - f(x) = r [f(x + t) - f(x)] K?;)(t) dt
-1r

'" 1r ( t )i 1 .1r= I bi J sin - K?;\t) dt +-, J 8(t) t'''K?;)(t) dt
i~l -1r 2 111. -1r

m __ 11

+ I bi J 'fi(t) tm+1K?;)(t) dt.
i=l -'IT

(3.12)

The first sum in (3.12) vanishes. This follows from the fact that the terms
with i even vanish since M/(Ki<!;») = 0, j = 1,... , k, and the terms with i odd
vanish since (sin(tj2))i KJ:~)(t) is an odd function for i = 1, 3, ... , m.

As to the second term in (3.12), since

we have

But, by Lemma 1, I d~) I = O(n2i), i = 0,... , k, and, by Fact 4,

j+ 2i < 4k + 4.

Hence,

Finally, the last sum in (3.12) is O(u-rn - 1). This follows since for i = 1,... ,111,

I 'fi(t)! ~ B, where B is some constant depending on k, and hence, by
Lemma 1 and Fact 4,

= O(n-m- 1), i = 1,2,... , m.
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Thus, from these results and (3.12), we have !i f~~'l(f; x) -- f(x)! c=
0(w1(f,m), lin) n-I/') + O(n-"'-I). But since fE .P', w1(f(iJ/),. lin) = 0(1/'1),
and so II fY.jl(f; x) - f(x)11 = 0(11-m

-
1), N = 2(n - lXk + 1) + le, liZ =c

2k + 1. On the other hand, by Theorem 3a, there exists cufE Coo such tl1S.~

limn _. XJ n2k+2 ,] f<jj)(f; x) - f(x)l! > O. Hence, f:yr;l} has a ciitical degree of
convergence ~(n) c= n-21:-2 •

SincefE y21.+1 implies 1.1. f<jj)(f; x) - f(x)li = 0(n-2k - 2), we have y~k+l ~ S''',
where S* lS a domain of critical degree for {f~'}. But by Fac: 6
(Zygmund's theorem), we also have that

irnplies £' ~ 72k-'-1J t: L ,

where TNex) is the trigonometric polynomial of degree LV of best Tchebychel'f
approximation to f(x). Hence, S* ~ 2 21'+1. This concludes the proof of the
theorem.

Fina! Remarks

Since Ii T,,(x) -f(x)11 = O(n-"'-I) does not imply fE Y"', we were unable,
in the proof of Theorem 3b, to characterize s* as being exactly pl:,\ using
the type of argument employed there. But, as ,vas noted previousiy, a domain
of critical degree for the positive Jackson operators (3.1) is F. This leads one
to conjecture that a domain of critical degree for the 2k-zero operators {r~~;}

is indeeci y~k+l. The methods of proof employed for the positive Jackson
operators, however, seem intractable for these 2k-zero operators.

A simple example is given in Tables I and II, which compare the errors in
approximation to f(t) = [cosCt/2)]6 at t = 0 using the positive, 1-zero and
4-zero operators defined by the kernels TV,\i l and V,\'l, i = 0, 1, 2, constructed
in Section 2. By Theorem 2, we can expect the operators defined by W,~O\ W,;l)

TABLE I

IY,: "-Approximation Errors for (cos t':2)6 at t = 0 U,ing Positive.
2-Zero and 4-Zero Operators (i = 0, 1. 2)

}; Positive 2-Zero 4-ZefC'

1 0.2501660 0.0825120 0.0282779
2 0.0833193 0.0092754 0.0010351
3 0.0394717 0.0020808 0.0001086
4 0.0227269 0.0006894 0.0000206
5 0.0147058 0.0002885 0.0000056
6 0.0102736 0.0001408 0.0000019
7 0.0075757 0.0000765 0.0000007
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TABLE II

VAil-Approximation Errors for (cos t/2)6 at t = 0 Using Positive,
2-Zero and 4-Zero Operators (i = 0, 1,2)

n Positive 2-Zero 4-Zero

1 0.453125 0.124999 0.015624
2 0.343749 0.081249 0.008928
3 0.278124 0.057142 0.005795
4 0.233928 0.042410 0.003719
5 0.202008 0.032737 0.002603
6 0.177827 0.026040 0.001893
7 0.158853 0.021211 0.001400

and W,~2) to achieve a degree of convergence 11-2, 11-4 and 11-6, respectively,
for sufficiently smooth functions. Table I shows that such degrees of conver­
gence were indeed obtained. Theorem 3b, however, does not assure us of
achieving degrees of convergence as good as those for the operators defined
by the trigonometric polynomial kernels V~i). It can be shown, in fact, that
the operators defined by V~O), V~l) and V~2) give a degree of convergence not
better than 11-\ 11-2 and 11-3, respectively. Table II shows that these degrees of
convergence were actually obtained. A straightforward numerical integration
procedure was used to compute the approximations.
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