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1. INTRODUCTION

Let C, denote the class of continuous and 2a-periodic (or bounded if
a = o0) functions defined on the real line, and let Z(f; x) denote the
transform of fe C, by the linear operator ¥: C, — C,.

In this paper we investigate the degree of approximation to functions fe C,
by sequences of certain types of nonpositive linear operators in the Tchebycheff
norm. The motivation for this investigation is the fact that certain types of
sequences of positive linear operators, {%,}, can only achieve a degree of
approximation as good as n~2 for any interesting class of functions. This has
been established by Korovkin [5] for sequences of positive linear
trigonometric polynomial operators of degree », and by Butzer {1] for
positive linear operators of the type

K f;x)=n f fx 4+ w) Hnuy du,  feC,,

o
et
Jay

N

where H(z) is a positive, even function continuous at 0, with [, H()dt = 1.
In order to improve this degree of approximation, we introduced in [4],
a special type of 'nonpositive operator, namely, a 2k-zero cperator of the
form

[
’g(k)(f; x) = f f(t) K(k)(t - x) dt: 0<a <, ./J‘E Ca H

where X™(u) € C, is an even function that oscillates across the u-axis a fixed
number of times in a prescribed manner (see Definitions 1 and 2). Necessary
and sufficient conditions were given in [4] for sequences, {&'P{f: x¥, of
such 2k-zero approximating functions to converge uniformly to f(x)e C, .
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128 J. C. HOFF

In the present paper, it is shown that for sequences of 2k-zero trigonometric
polynomial operators, {7 ¢}, and 2k-zero operators, {5}, of the type (1.1)
(see Definition 3), better degrees of approximation are possible for certain
classes of functions, In particular, 2-zero operators may yield better degrees
of approximation than is possible with positive linear operators of these types.
On the other hand, it is shown that no matter how “smooth” fe C, is, the
degree of approximation to f is not better than »2*-2 for these types of
2k-zero operators. These results are contained in Theorems 2, 3a and 3b.
Further, a method for constructing 2k-zero operators is discussed (Theorem 1)
and some examples are given.

DEFINITIONS

Let u(t) be an analytic, even function defined on [—a, g] such that u(0) = 0
and u(f) is strictly increasing on [0, a]. Denote the jth y-moment of f C, by

Mi(f"’r f)7 i-e-;

M) = [ wOf@dt,  j= 0,1,

and set M(f) = My(u, f) whenever convenient,

We call « a simple zero of a function feC, if f(o) =0, and
for some € >0, « —e < {; < o < {y < a4 e implies f(E,)f({) # 0,
sgnlf({)] = —sgn[f (L))

DermniTioN 1. A function K(¢) € C, is called a kernel if

() K(t) = K(—1),
() MyK) = 1.

If, in addition, K(¢) has exactly k simple zeros o;, i = 1, 2,..., k, in (0, @)
and for some wu(f) we have

(i) Mip, K)=0,j=1,.,k,
then K(¢) is called a 2k-zero kernel with respect to u, and is denoted by K*\(r).

DerFmNITION 2. Let % C, — C, be the linear operator defined by the
convolution

200 = [ fOKPe—xd, O0<a<w, feC,,

where K'® is a 2k-zero kernel. Then £* is called a 2k-zero operator.
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DerinvimioN 3. (2) Let ¢ = = and () = sin®(#/2). For a fixed & ana
each n, let # be a 2k-zero operator such that F*)(/; x) is a trigonometric
polynomial of degree n. Denote these operators by 79 and set M7(f} ==
M;[sin®(#/2), f1, j > 0. (Note that 7 *(f:1x) is a tngodometrk polynomial
of degree n, for every fe C,, if and only if K} is a trigonometric
polynomial of degree #.)

(b) Leta = oo and u(z) = t% For a given k and a given 2k-zero kernsi
H®) with respect to p, define K{P(1) = nHW(nt), n = 1, 2,... . Denote the

operator defined by the 2k-zero kernel K by #'F and set ALH(f) =
M2 f), 7 = 0. It is assumed in this case that M7, (| H™ |} exists.

2. CONSTRUCTION OF 2k-ZERC KERNELS

Method

The construction consists of multiplying a positive. even function K{z) € C,
by an appropriate even function p,(t) € C, which has exactly 2k zeros in
{(—a. a).

We show that if A(¢) is a function defined on [—a, ¢, satisfving certain
conditions, then there exists an algebraic polynomial p{x) of degree & such
that we can take p\(t) = p(A(#)), 1 € [—a, a]. Furthermore, we have then
MyA, pky = 1 and My(A, pK) = 0, j = 1...., k. We first note the following
fact:

Fact 1. Let f(¢) (== 0) be a nonnegative, even, continuous function on
[—a, a]. Let Af) be defined on [—a, a] and suppose {AN(e}E, iq lineaﬁ*'
independent on [—a, a]. Then, if the A-moments A/{A, /). j = 0,... exist,
the system of equations

k
Z BiA[i+j(A9Jf) = 8]' ] ./ = 09 ia“w 'E"Va {
=0

[
P2
Nerr

where &; = I and §; = 0, j > 1, has a unique solution,
The proof of this fact is accomplished by showing that the coefficient matrix
of (2.2) represents a positive definite quadratic form (Hoff [37).

TueoreM 1. Let K(t) € C, be a nonnegative (== 0) even function and let
w(t) be as in Section 1. If the p-moments M(u, K}, j = 0, 1,..., 2k, exist, then
there is a polynomial p(x) = k_o veXt such that if we set p,(t) = p(u(t}) for
| t| << a and extend p(t) periodically to the whole real line if o << oo, then
2. K(t) is a 2k-zero kernel.

640/12(2-3
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Proof. Since u(1) is strictly increasing on [0, al, {p*(t)}, is linearly
independent on [—a, a]. By Fact 1 with A = p and f = K, there exists a
solution {B;}}_, to the system (2.2). Let g(x) = ZLO Bixt and set q.(f) =
q(p(0), te{—a,al. If a < o, extend ¢,(¢) to the whole real line as a
2a-periodic function. Then ¢,(t) € C, is even and ¢,(t) K(¢) satisfies conditions
(i), (i), and (iii) of the definition of a 2k-zero kernel with respect to p
{Definition 1). Furthermore, since ¢,(¢) K(¢) satisfies condition (iil) of Defini-
tion 1, g,(z) must have at least 2k simple zeros in (—a, a) (Hoff [3]). On the
other hand, ¢(x) has at most k simple zeros in (—a, a). Therefore, since u(t)
is even and strictly monotone on {0, ai, ¢.(f) = q(p{?)) has at most 2k
simple zeros in (—a, @). Thus, with p(x) = g(x), the theorem is established.

Examples

We first construct 2-zero and 4-zero kernels of the form nH(nt) on
(—o0, w). Consider the positive Weierstrass kernels

I
W?(LO)(I) == e—(n.'t)2
Vo

andnotethat M;#(W?) = (1 -3 -+ (2j — 1))/(2n?Y,j > Land M" (W) = L.
Solve (2.2), with f = W® Xt) = 1> and k = 1. This yields the solution

n o’

By = % and B, = —n? Therefore, we have the sequence of 2-zero kernels

i 3 ]

W) = L (2~ () et
® Vo (2 (nt) )

with zeros 4-a,, = +(1/n) V3. Similarly, with k = 2, we construct the

4-zero kernels

W) = —- (15 >

1 R
B "t2 ol f4 e—(nt)—
=5 3¢ )+2<n>)

with zeros

1 /5 5 1 /5 /5
i“"l’iﬁ\/i_\/i and :Ea"2_j:ﬁ/\/§+\/§'

As another example, consider the positive nth degree trigonometric
polynomial

vO®r) = (cos é)m,
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and note that, with p = |7, (cos(//2))** dr, we have
” 1-3-027— 1
MOy = W — 1 _
7 =p 2w+ +ji =0 n+=1
Solve (2.2}, with f = (1/p) V¥, M) = (sin{#,2)j? and & == i. This yields the
sequence of 2-zero trigonometric polynomial kerneis of degree s — 1:

n+1
n+1(‘t\ et ) (

o(2n + 1)
Similarly, with & = 2, we have the 4-zero kerneis of degree 5 + 2:

ERARTS 4
— 2+ 4 isxr 5} jicos 5

Az o (n + 1)(" - 2} 0 _f\g
Vaselt) = 2p(4n% 4- 8n + 3) (3 20 + 3) {Qm 2 )
N \ 27
A0 + 3 + 4) (sm —~}7 ; cos %?

The zeros of these 2-zero and 4-zero trigonometric Yernels are ail of the
order O(n=1/%),

Fig. 1. Kernels W¥. 01 = 1,2

Fig. 2. Kernels V2, , 2 = 2, &, 10, 14
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We note further that {M (| W )} and {M7(| V' |}, j = 1,2, are
bounded sequences. Therefore, from the results in Part I on convergence,
since the sequences of kernels {W{'} and {V{"}, j = 1, 2, peak, each one
defines a sequence of 2-zero or 4-zero operators which, when applied to an
fe C,, converge uniformly to it.

A Special Example
We now construct a special sequence of 2k-zero trigonometric polynomial
kernels. These kernels are used later in proving Theorem 3b concerning the
degree of approximation of trigonometric operators., The kernels are
constructed from generalized Jackson kernels, i.e., positive trigonometric
polynomials of degree 2(n — 1)(k + 1) of the form
nt dk+4
sin -
Jolt) = n1-3 p , k=1,2,.. (2.3)
Sin E

We first state, without proof, the following two facts (Hoff [3]):
Fact 2. Fork =0, let

/ nt A+
- {sin )

Sip == n—4""3J mdt, 2.4)
)
=4l %M—%idt < o, 2.5)
and ’
4 = oY, j=0,1,.,2%k + 1. (2.6)
Then

Sin = $in -+ o(n™¥).
Fact 3. Let §;, be defined by (2.6). Let S be the (k + 1) x (k + 1) matrix

Son S1n = Sen

= [t
§in §2k,n
and let S; be the submatrix of S obtained by crossing out the first row and
ith column of S. Then there are constants b, 7= 0, b ,..., by, such that with
k’ == 2k(k 4 1), we have detS = bpn— and detS; = bpu—*+2-1 ;=

. k -+ 1. Furthermore, if p(m) is a permutation of the lntegers
m =0, 1,..., k, and if we set m, == m -+ p(m), then

k
H Smpn = O(™).

m=0
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Lemma 1. Let J,, be defined by (2.3), k = 1. Then there exist 2k-zere
kernels of the form

: . t ’Z] . ”
K@) = [Z i) (sm 2) | e, (2.7
=0 i
where ¢®) = O@¥) asn— o0,{ =0, 1,..., k and ¥ = 2(n — Dk + ).

Proof. Let s;, be defined by (2.4) and consider the system of equations

7
~
897

N

P N PR 7
Z Sivi,n¥s = O;, i=01,..4%
Jj=0

where 8, =1, 8, = 0, i = 1. Since M;"(J,;) = s,,, therefore, by Fact i,
with A(f) = sin®(#/2) and f = J,.. a solution {x;} = e i =0k,
exists for (2.8). Hence, by Theorem 1, with g(x) = 3, ¢ and u(t) =
sin?(¢/2}, the functions (2.7) are 2k-zero trigonometric polynomial kernels,

We now show ¢ = O(n?), i ==0,..., k. Note, first, that by Fact 2,
Sin = §ip -+ o(n~%), where §;, is defined by (2.6}. This may be rewritten in the
form s;, = §,(1 + ¢;,), where ¢;, — 0 as # — cc.

Let S be the coefficient matrix of the system of equations (2.8):

Son Sin 77" Skn
S1n Sop 77"
. . B

Lo {
Skn S:zk;rz_j

S =

and let S; denote the submatrix of § obtained by crossing out the first row and
ith column of S. We show that, with k" = 2k(k + 1), det § = bgn=*" + o{n="")
and detS; = O(m*12¢+0), j = 1,...k -+ 1, where b, is some nonzero
constant, Let p(m) denote a permutation of the integers m = 0, 1,..., &, and
let m, = m + p(m). Then

det S = Z (Sgnp H Smpn)

m=0

sgn p H myn (1 + 5mpn))

=z

P m=0
— Z (sg

det S - D, , 2.9
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where S is the matrix defined in Fact 3, and D, is a sum of terms of the form

(11 Sua (1T ns). 1
=0
where each 7,,, is one of the ¢, e By Fact 2, Hm_o Smon = = O(n*"). Hence,
since M > 0 as n — oo, D, = o(n™*"). Also, by Fact 2, we have detS =
b, by = 0. Therefore, from (2.9) we obtain det S = by -+ o(n™*"),
b, #+ 0. In a similar manner, it can be shown that det §; = O(n—*"+2i-1),
i=l,,k+1.

Now if we solve the system of equations (2.8) by Cramer’s rule for the
unknowns ¢{&) = x;, we obtain

e [ detSiy | 0
det S | b= + o(n*)|

i =0, 1,..., k. This establishes the lemma.

The 2k-zero operators defined by the trigonometric kernels K{*' constructed
in Lemma 1 yield approximating functions  {(f; x) which are themselves
trigonometric polynomials in x of degree N = 2(n — 1)(k + 1) + k. The
representation of these approximations as trigonometric polynomials may be
obtained as follows.

Since J,; is an even trigonometric polynomial of degree n =
2(n — 1)(k + 1), it admits the representation

= 0(n™),

B
Tult) = m -3y oW cosit k=0,
where pi¥) = O(n*+3), i = 0, 1,..., n’. Therefore,

K90 = | 3, et (sin 5] 7m0

=0
(€3] : 4
— k-3 {COIL +31Y (1 — cos t)z'j”i y Pz(ifz) cos lt]
i=1 i=0
= -8 2 o cos it (2.10)

where the {a""}z_0 may be calculated from the coefficients {c{®'}%_, and the

values {p{}%, . Since Ju(t) = n*[J,o(2)]*2, therefore, for fixed n, the p{)
may be calculated recursively with respect to k, having (Schurer [8])

© _ 1 3i% — 6i%n — 3i + 4n® + 2n, 1<<i<gn,
Pin =3\ 4 6itn — i(12n2 — 1) + 81 — 20, 1 <i <2AM — 1)

pon = ¥ + ).
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We then obtain

)
e de
oy cOs i1 — ‘(;\

TR0 = s [ £

,@,Mz

\

= pi-3 Saﬁ’;f + Y (a(’“ cos ix + b sin 1f;§-

{ P
whers

a® = (l)f f(t) cos it, i=0,1,..,5,

b = "") ‘ j(t) sin it, P=1,.., V.

For example, if & = 1, we have from (2.10) the 2-zero kernels

RO = 7 g(c‘gl’ L) _3“ ol cos if

2=

N-1 ,
— 1Y piB(cos(i 4 1) ¢+ cos(i — 1) t“é
=0 !

= g7 Z a‘l) cos if, N = 4dn — 3.

Therefore,
(1)
(W) R UCT N C ) Py P=0
1 1) 1 1 1 1 1 - -
o = (€5 + 3¢in) pin — Yein X 2/(Ja)n - Pan ; i=1,
1 1 B e
Pivin P, 1= 2, N — 1,
and
@) (1) (1)
04171——3 n clﬂp4n—i n -

3. ASYMPTOTIC BEHAVIOR OF THE 2k-ZERG OPERATORS & &) AND #(

Critical Degree of Convergence

In this section we show that for the operators " and 7% defined in
Definition 3, Section 1, better degrees of approximation are possxble for
certain classes of functions. On the other hand, we show that there is a limir,
in a certain sense, to this improved degree of approximation.

To state these ideas more precisely, we let || - || denote the Tchebycheff norm
and make the following definitions.



136 J. C. HOFF

DerNiTioN 4. Let {%,} be a sequence of operators defined on C,, and
let ¢(n) be a positive function defined on the positive integers. Then {%,} is
said to have critical degree of convergence i(n) if:

@) hln) = o(1);

(ii) there exists an f'e C such that
LSy x) — fO)
lim > 0;
oo (n)

(i) for every fe C=, || Z(f; x) — f(x)] = OQh(n)).

and

DeriniTION 5. Let of(#) be a critical degree of convergence for a sequence
of operators {%,}. If there exists a set of functions S* C C, such that
|| L fs x) — f(x)l = OQp(n)) if and only if f € S*, then S* is called a domain
of critical degree for {Z,}.

The moduli of continuity of order one and two of an fe C, are defined,
respectively, as

wnfs B = max [ f(x + 0 — FQIL 1 1] < A
w(fi By = max [ f(x + 1) -+ f(x — ) = 2 GO, 1 1] < A,

and we note that for any r = 0, w,(f, rh) < (1 + r) w(f, k). We then define,
for every integer m > 0, the following classes of functions:

C™ = {fe C,: f has a continuous mth derivative},
Yo = {fe Cy: w(f", h) < Bh for some B > 0},
Zm = {fe C,: f'" continuous and w,(f™), k) < Bh for some B > 0},

and note that C**1 C ym C Zm C C™,

To illustrate the concepts of critical degree of convergence and domain of
critical degree, consider positive linear operators. Let {7} be any sequence of
positive trigonometric polynomial operators of degree n (which do not
necessarily have to be of the convolution form given in Definition 2).
Korovkin [5] has shown that there exists an f € C* (e.g., one of the functions 1,
cos x, sin X) such that || 7,(f; x) — f(x)|| = o(n~2) is false. It is known,
however, that for the positive trigonometric polynomial Jackson operator of
degree 2(n — 1), defined by

nt\*4

sin ——
2

TAF 0 = gy ) S D a 6D

sin —
2
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we have || 7,(f; x) — f(x)|| = O(m™?) for every /s C% Hence {n) = n?isa
critical degree of convergence for the Jackson operators {#,}. Moreover,
Lorentz [6] has shown that a domain of critical degree for these operators
is ¥1. Also, for the positive operators of the type 570 defined in Definition 3b,
Butzer [11 has shown that {9} has a critical degree of convergercs
o{ny = n2

The Operators #'®

TuEGREM 2. Let {H#'F} be a sequence of the 2k-zero operators defined i
Definition 3b. Then {#'"} has a critical degree of convergence fi(n) == n—2~2,
Moreover, if S* is a domain of critical degree for {1, then Y¥+2 C 5%,

Proof. Consider first the local asymptotic behavior of 9 (f: x) — fix)
for fe C*+2, Following the method of proof of Butzer [1] we expand (¢} in
its Taylor’s series with a remainder:

m i
- fOx)
fet+ 0 —f =y e

I y s
+— [FE) — f ™l (32
i=1 e

where m = 2k + 2, £; lies between x and x - 7, and we assume f(™(x} 5= 0.
Let 8() = fim(¢,) — f)(x). Then

HOLx) —f) =n [ St + %)~ F] HOe) die

™Gy
e Z ]_(M ;iH(k)(nf‘} a¢
T )4

i1 I+ Y

o)
S 8w e ) d.
mtd_.

!
T

LI

<

Ls2
SNt

1] i‘

Since H{u) is an even function, the summands corresponding to i =
1, 3,..., 2k — 1 vanish. From the definition of a 2k-zero kernel (condition iii
of Definition 1) it follows, however, that the summands correspending to

i ==2, 4., 2k also vanish. Hence, we may rewrite {3.3):
3, . 1 L o SN 7t
9’/5{‘"(}; x)—f(x) = pl gf(’””(x)J at™H @it ) dt — j(‘ nf(t) 1™ H " (e ) dt |
(3.4

Let I; and 7, denote the first and second integrals in (3.4} respectively. Then

I = n""”J ) umH9Ny) dy = =" ME  (H*), 3.5

—
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Now since f“?)(¢) is continuous and bounded, for every ¢ > 0 there exists a 6,

such that | 6(¢)] < € when 0 < |¢| < J.; and there is a B > 0 such that
| 8(t)] < Bfor all z. Given e > 0, write

L= (J-ItlgrsE * fI

Let 1,; and I, denote the first and second of these integrals, respectively. Then

) nf(¢) 1™ H®(nt) dt.

t12>8¢

[In| <en [ L O HOG) dt = e [ um| HO@W) du

<ée < lul<se
= en""]l/ffﬂ(\ H® )
and

t™ | H*Nat)| dt = Bn—™ J u™ | H® ()| du.

lul>né,

11221<an1|

tizs,

From Definition 3(b) we have that M, (| H® |) exists. Therefore, there is an
N, > 0 such that for n > N, we have

w" | H®W)| du < e.

Ylulzns,
Hence, | I, | << eBn™ and
[ L < {lyl+1lnl <eBr™

where B’ == B + M{ (| H® |). From this result, (3.4) and (3.5), we have,
for each fixed x such that fU(x) == 0, that

tim n" P ) — F0) = L0 pt ). (36)

Thus, if f)(f) == 0, then (3.6) implies that
| AP x) — FOOll # o(n=™),  m = 2k + 2. (3.7

Note that if we did have || #E(f; x) — f(x)| = o(n~™), then fo(¢) = 0, in
which case f(z) must be a polynomial of degree m — 1 = 2k - 1.

Now consider the global asymptotic behavior of the difference
HW(f: x) — f(x); welet f Y21 By an argument similar to the one used in
deriving (3.4) we have

ARG — ) = gy [ S0 a8
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Now

@) = [ E) — [T S e (L E = x )

< +n|é—~ x)wlgf‘”‘” 5}

7/

SO 4nlt)a (rom, ).

Therefore, using (3.8), we obtain

. f i Iy r™
D = FON < gy (£ ) [ et e
pomtl Iy g .
=T (f““ B —/‘, 5 (a2 -+ wmy] H¥ )| du

o [ 1A
= 0 (n~4]1~1w1 (f(m—l)’ _§>_

ns
But since fe Y241, o, (f 2% 1/n) = O(nY). Hence,

|00 x) — flx

Relation (3.9) together with (3.7) imply that {(#) = a~**-2is a critical degree
of convergence for {7}, Moreover, (3.9) implies that Y21 C §*, where S*
is a domain of critical degree for {#{*}. This concludes the proof of the
theorem.

32k /\ 3O
{3.9)

The Trigonometric Operators I &)

Recail that the assertion of Theorem 2 concerning critical degree of
convergence holds for any sequence of 2k-zero operators of the type #°.
This is not too surprising since the #7% are a very special type of 2k-zero
operators whose kernels are generated from a single kernel function. For
sequences of 2k-zero trigonometric polynomial operators, however, it is not
necessarily true that a degree of convergence as good as n—*~2can be achieved
for sufficiently smooth functions, even if the degree of convergence improves
as k increases (as for example, is the case for the sequences of operators
defined by the 2-zero and 4-zero kernels V" and V/® constructed in
Section 2). On the other hand, it is true that every sequpnce {F 7} satisfies
condition (ii) of Definition 4 with J(n) = n273% i.e., there exists an fe C,
such that im, . #272 || TE(f; x) — (0] > 0. Furthermore, a particuiar
sequence of 2k-zero trigonometric polynomial operators can be construcied
that does indeed have a critical degree of convergence n—2%—2. These assertions
are contained in the following lemma and thecrems.
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Lemma 2. Let {7 P} be a sequence of 2k-zero trigonometric polynomial
operators k = 1, as defined in Definition 3a. Then for g(t) = (sin(z/2))2*+2,
we have || T F(g; x) — g(x)|| = en2, ¢ > 0,

A proof of this lemma is given in Hoff [3]. The proof proceeds by induction
on k and depends upon showing that all the zeros of the kernels satisfy
lop; | =™, ¢, >0, i = 1,...,k, and then employing the well known
result that if T,,,(x) is the (r 4+ 1)st degree trigonometric polynomial of best
approximation to |sin x| on [—m, 7], then || Tpya(x) — |sinx || = cn7?,
¢; > 0 (Korovkin [5]).

From this lemma we immediately obtain

THEOREM 3a. Let {7 "} be a sequence of 2k-zero trigonometric polynomial
operators, k 2= 1, as defined in Definition 3a. Then there is an f € C* such that

lim n?+2 ] 7 5(f; x) — f(x)|| > 0.

n—>0

Remark. The paper by Buizer, Nessel and Scherer [2] establishes this
theorem using a more general approach. It is shown that if {K,(u)} is a
general sequence of even, trigonometric polynomials of degree # such that
K,(0) > 0 for n sufficiently large, and if K,(u) has exactly 2k changes of sign
for each n > 2k, then at least one of the k + 2 sequences

{n?+2 | & (cos ju; x) —cos x|}, O0<<i<k-+1,

does not tend to zero as n — o0, where
1 pT
L0 = 57| JOKG—ndi

and || - {| can be taken as the Tchebycheff or as any L, norm, | < p < .
Similar types of results are also given for nonsymmetric K, (x) and for K,
such K,(0) < O for sufficiently large n.

We now prove an analogous theorem to Theorem 2 for a particular
sequence of 2k-zero trigonometric polynomial operators. The following facts
are needed (Hoff [3]):

Fact 4. Let k, m, and i be positive integers such that k¥ > 2 and
m +1i < 2k. Then

sin i\
sin Ly 2
2

n—2k+1 J”T l t lm

-7

; dt = O(n—m9),
1n 5



KERNELS OF FINITE OSCIHLLATIONS

14l

Fact 5. Let i {t) = (sin(¢/2)), i = 1,...,

PRt 2k+1 . )
t = (2 sin —2—) — Y aut! — D t) 132

i=iti

2k - 1. Then

where

— 2o \ (1) — 1 e g PPN
aij - j]-_!hi (01 and %U) — (Zk __~_ 2): / 12 ( 7t> {\3'101
and &;; is between 0 and ¢

We also make use of a well known result due to Zygmund [10]

Fact 6. Let T,(x) be the nth degree trigonometric polynomial of best
Tchebycheff approximation to the periodic function f(x}. Then for any

integer ru = 1, || T(x) — f(x)|| = O(n—""Y} if and only if fe Z7.

THEOREM 3b. There exists a sequence {7 M} of 2k-zero trigonometric
polynomial operators which has a critical degree of convergence (i) = .vrz’ 3
k =1, and o domain of critical degree, S*, satisfying Y%+t C 5% C Z%

Proof. Let {7} be the sequence of 2k-zero trigonometric polynomial
operators defined by the kernels K{¥ constructed in Lemma !

i

Kf\lrc)(t) — [ 3 e® (sm ; \) 13 I8

i=0

where N =2n — Dk + 1) + k and J,(¢) is defined by (2.3). We show
At

that{] 7' E(f x) — f(x)|] = O@22) for every f € C». We in fact show that
this holds for every fe Y21

Let fe Y241 expand £(¢) in its Taylor series with remainder at x € [~ #]:

1
flet ) =109 = ¥ Lo
where m =2k + 1, 0(t) = f"(&) — f"™(x)}, and £, lics between x and

¢ -+ x. From the representation of %, i = 1,..., 2%, given in Fact 3, (3.11) may
be rewritten as

- . 1 ;o m
f+x)—fix)= Z b; (sm ) + — B(z)e™ + { ) b; %(z)\t gt

where @4(¢) is defined in (3.10) and each coefficient &; is a sum of terms
involving the derivatives of f at x and the coefficients g;; defined in {3.10)
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Therefore, since M,7(K{) = 1, we have

RN — 1) = [ e+ 1) — ) KP @ ar

m t

— z b; f (sin 7) R®() dr +L J,,:T B0 RO

+3 b J o) 1R E(1) dt. (3.12)
=1

—

The first sum in (3.12) vanishes. This follows from the fact that the terms
with i even vanish since M;7(K{") = 0, j = 1,..., k, and the terms with i odd
vanish since (sin(z/2))* K¥(¢) is an odd function for i = 1, 3,..., m

As to the second term in (3.12), since

100 < w(f, | & —x ) < (1+nltt)w1(f‘”“,,%),

we have

|7 80k | <o (7, 0) [ 10 401 e) enR P 0]
oy (£,0) z e [T Qe ey (sin ) Tuute)

But, by Lemma 1, | ¢/®! | = O®®), i = 0...., k, and, by Fact 4,

N

T 2%
[ 1ep (sin %) Jolt) dt = Om—-%),  j+2i < 4k + 4

Hence,
| f; 0) R () ] =0 (wl ( Fom, %) n“"’).

Finally, the last sum in (3.12) is O(r—"-1), This follows since for i = 1,..., m,
| pi(#)] << B, where B is some constant depending on k, and hence, by
Lemma 1 and Fact 4,

T . T 25
l [ ety & P(0) dz\ B 2 e 1 [* ema (sin %) ROY

—1r

= Om", i=12,...,m.
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Thus, from these results and (3.12), we have |/ x) —fx) =
Oloy(f™, 1/my =) + O(@—™1). But since fe ¥, cwy(f'™), I/n) — O/,
and so | TW(f x) — (@) = O™, N = 2n — L)u’( =Dk om =
2k + 1. On the other hand, by Theorem 3a, there exists 2n f'e C such that
lim, ., 22542 T O(f: x) — f(x)]] > 0. Hence, {7} has a critical degree of
convergence () = n—2

Since fe Y#+ implies | 7 E(f; x) — f(x)| = Oln=2-2), we have Y%+ C §*
where 5* is a domain of critical degree for {7 . But by Fac: &
{Zygmund’s theorem), we also have that

Tw(x) — fO) < NTES x) — f(o)l = O(r?2) implies fe 721,

where T{x) is the trigonometric polynomial of degree & of best Tchebyche T
apprommation to f(x). Hence, §* C Z#+! This concludes the proof of the
theorem,

Final Remarks

Since || T,(x) — f(x)]] = O(m~™"1) does not imply fe ™, we were unable,
in the proof of Theorem 3b, to characterize S* as being exactly Y%, using
the type of argument employed there. But, as was noted previousiy, a domaw
of critical degree for the positive Jackson operators (3.1) is 2. This leads one
to conjecture that a domain of critical degree for the 2k-zero operators {7 ('}
is indeed Y#+1 The methods of proof employed for the positive Jackson
operators, however, seem intractable for these 2k-zero operators.

A simple example is given in Tables I and II, which compare the errors in
approximation to f(¢) = [cos(¢/2)1® at + = 0 using the positive, 2-zero and
d.zero operators defined by the kernels W and V{9, i = 0, 1, 2, constructed
in Section 2. By Theorem 2, we can expect the cperators defined by W/, Wl

TABLE I

H7 P —Approximation Errors for {cos #2)® at ¢ = 0 Using Positive,
2-Zero and 4-Zero Operators (7 = 0, 1. 2)

i3 Positive 2-Zero 4-Zero

i 0.2501660 0.082312¢ 0.028277%
2 0.0833193 0.0092754 0.0010351
3 0.0394717 0.0020808 0.0001036
4 0.0227269 0.0006894 30000206
5 0.0147058 0.0002885 0.0000058
5 0.0102736 0.0001408 0.0000619
7 0.0075757 0.0000765 0.0000007
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TABLE II

Vid——Approximation Errors for (cos#/2)® at f = 0 Using Positive,
2-Zero and 4-Zero Operators § = 0, 1, 2)

n Positive 2-Zero 4.Zero

1 0.453125 0.124999 0.015624
2 0.343749 0.081249 0.008928
3 0.278124 0.057142 0.005795
4 0.233928 0.042410 0.003719
5 0.202008 0.032737 0.002603
6 0.177827 0.026040 0.001893
7 0.158853 0.021211 0.001400

and W® to achieve a degree of convergence n—2, n—* and n-%, respectively,
for sufficiently smooth functions. Table 1 shows that such degrees of conver-
gence were indeed obtained. Theorem 3b, however, does not assure us of
achieving degrees of convergence as good as those for the operators defined
by the trigonometric polynomial kernels V. It can be shown, in fact, that
the operators defined by V', V" and V® give a degree of convergence not
better than n—, n—2 and »n—3, respectively. Table II shows that these degrees of
convergence were actually obtained. A straightforward numerical integration
procedure was used to compute the approximations.
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